Rapid Protein Separations in Microfluidic Devices

نویسندگان

  • Z. Hugh Fan
  • Champak Das
  • Zheng Xia
  • Alexander V. Stoyanov
  • Carl K. Fredrickson
چکیده

This paper describes fabrication of glass and plastic microfluidic devices for protein separations. Although the long-term goal is to develop a microfluidic device for two-dimensional gel electrophoresis, this paper focuses on the first dimension–isoelectric focusing (IEF). A laserinduced fluorescence (LIF) imaging system has been built for imaging an entire channel in an IEF device. The whole-channel imaging eliminates the need to migrate focused protein bands, which is required if a single-point detector is used. Using the devices and the imaging system, we are able to perform IEF separations of proteins within minutes rather than hours in traditional bench-top instruments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfluidic Integration of Parallel Liquid Chromatography

Here we report the development of a fully integrated microfluidic chromatography system: A novel column geometry solves a long-standing problem in on-chip separations. This geometry facilitates the rapid and high yield stacking of multiple bead columns in poly(dimethylsiloxane) PDMS microfluidic devices using low pressure flow. Microcolumns are integrated with on-chip plumbing to enable fully a...

متن کامل

Size-based protein separations by microchip electrophoresis using an acid-labile surfactant as a replacement for SDS.

We demonstrate the use of an acid-labile surfactant (ALS) as a replacement for SDS for size-based protein separations in a microfluidic device. ALS is of interest to the proteomic field as it degrades at low pH and hence can be removed to reduce surfactant interference with down-stream MS. A range of SDS and ALS concentrations were tested as denaturants for microchip electrophoresis to investig...

متن کامل

Fabrication of microfluidic systems in poly(dimethylsiloxane).

Microfluidic devices are finding increasing application as analytical systems, biomedical devices, tools for chemistry and biochemistry, and systems for fundamental research. Conventional methods of fabricating microfluidic devices have centered on etching in glass and silicon. Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensi...

متن کامل

Non-aqueous microchip electrophoresis for characterization of lipid biomarkers.

In vivo measurements of lipid biomarkers are hampered by their low solubility in aqueous solution, which limits the choices for molecular separations. Here, we introduce non-aqueous microchip electrophoretic separations of lipid mixtures performed in three-dimensional hybrid nanofluidic/microfluidic polymeric devices. Electrokinetic injection is used to reproducibly introduce discrete femtolitr...

متن کامل

Single cell analysis on microfluidic devices.

There is significant variability among cells of the same type at the single cell level. This variability may be because of external stimuli that vary temporally or spatially among a population of cells. It may also be owing to the nonsynchronized responses of cells to various stimuli. In addition, differences in otherwise similar cells may be generated by genetic mutations acquired by one or mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004